
Proceedings of Department of Defense High Performance Computing Modernization Program Users Group Conference 2007,

June 18-22, 2007, Pittsburgh, PA

DOVIS: a Tool for High-throughput Virtual Screening

Xiaohui Jiang, Kamal Kumar, Anders Wallqvist, Jaques Reifman

Biotechnology HPC Software Applications Institute, Telemedicine and Advanced

Technology Research Center, US Army Medical Research and Materiel Command, Ft.

Detrick, MD 21702, USA

xjiang@bioanalysis.org

Introduction

Molecular docking is a computational technique to predict how a small molecule may

interact with a protein. Docking-based virtual high-throughput screening is an in silico

approach that uses molecular docking to rank a large database of molecules against a

given protein target. This approach has been successfully used in drug discovery

programs in the pharmaceutical industry. Typically, docking a molecule may take 1 to 5

minutes. With the explosive growth of known molecular structures, High Performance

Computing (HPC) is necessary to screen millions of molecules of potential interest.

Objective

The objective of the current project is to develop a DOcking-based VIrtual Screening

(DOVIS) pipeline based on AutoDock, a molecular docking program developed at the

Scripps Research Institute. The DOVIS pipeline has a graphic user interface (GUI) for

end users to specify input parameters, submit jobs and visualize results. The pipeline

automates docking tasks with AutoDock and is integrated with queuing systems to run

parallel jobs. Access to HPC resources to run DOVIS are made available from a local

Web-browser running on the user’s desktop.

Methodology

We developed the DOVIS pipeline using AutoDock as the docking engine and

OpenBabel as the molecular data model. The job-array function of the queuing systems is

used to launch parallel jobs. A novel parallelization scheme was developed using a file-

based inter-process communication protocol to control tasks running on each CPU. A

Web-server/Web-page architecture was developed based on the User Interface Toolkit

(UIT) to control DOVIS jobs on HPC platforms and provide a Web-page-based GUI.

Results

The DOVIS pipeline is running on JVN at the Army Research Laboratory (ARL) Major

Shared Resource Center (MSRC). More than 2 million molecules have been screened

against the ricin A chain protein target using the pipeline. Scientists at several DoD labs

are currently using the DOVIS pipeline in their research projects.

Significance to DoD

The ability to identify small molecule inhibitors of a biological target has many potential

applications in developing and identifying drug-like compounds for force protection. The

parallel implementation of the software with the UIT allows DoD life scientist, with

limited computational skills to effectively use HPC resources in a transparent way and

speed-up the lead-drug identification process.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2007 2. REPORT TYPE

3. DATES COVERED
 00-00-2007 to 00-00-2007

4. TITLE AND SUBTITLE
DOVIS: a Tool for High-throughput Virtual Screening

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
US Army Medical Research and Material Command,Biotechnology HPC
Software Applications Institute,Telemedicine and Advanced Technology
Research Center,Fort Detrick,MD,21702

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Proceedings of Department of Defense High Performance Computing Modernization Program Users
Group Conference 2007, June 18-22, 2007, Pittsburgh, PA

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

7

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1 INTRODUCTION

A key factor in the development of small-molecule therapeutics against biological threats

is the ability to identify initial lead compounds that can be used by medicinal chemists as

a starting point for developing therapeutic drugs. Experimentally screening a large

chemical database of compounds can be time consuming and expensive. Molecular

docking is a computational technique to predict how a small molecule may interact with a

protein. Docking-based virtual high-throughput screening is an in silico approach to rank

order a large database of molecules against a given protein target. It saves time and

resources by focusing and reducing the number of compounds to be experimentally

tested. In the last several years, virtual screening has become an accepted tool in drug

discovery. It has been successfully applied in a number of therapeutic programs, in

particular, at the lead discovery stage (Ghosh et al., 2006). With the explosive growth of

publicly available chemical databases, molecular docking techniques need to be capable

of screening millions of compounds. Since docking one molecule may take 1 to 5

minutes, screening millions of molecules requires the use of High Performance

Computing (HPC).

Several commercial docking programs, such as Glide (Friesner et al., 2004),

LigandFit (Venkatachalam et al., 2003) and FlexX (Rarey et al., 1995), can distribute

docking jobs to computers on a network. However, protocols that can seamlessly dock

millions of compounds and capture the top percentage of high-scoring ligands are not

standard. There are two major requirements for such a protocol running on a shared

Linux cluster: (1) the ability to launch parallel docking jobs through a queuing system;

and (2) the ability to process millions of compounds in a reasonable time. Since the latter

requirement may call for hundreds of CPUs working simultaneously, the protocol should

effectively handle the associated data flow through the file system without affecting the

performance of the cluster. In this paper, we describe a Linux cluster-based protocol

using AutoDock (Morris et al., 1998) as the docking engine.

AutoDock is a broadly used docking program developed at the Scripps Research

Institute. Application of AutoDock requires several separate pre-docking steps, e.g.,

ligand preparation, receptor preparation, and grid map calculations, before the actual

docking process can take place. Existing tools, such as AutoDock Tools (ADT) and BDT

(Montserrat et al., 2006), integrate individual AutoDock steps within a graphical user

interface (GUI), but they do not contain the automated capability to effectively process

millions of compounds in a single execution. Another limitation of AutoDock is the

output file format which is not commonly used by other molecular modeling programs.

Here, we describe a DOcking-based VIrtual Screening (DOVIS) pipeline, with

AutoDock as the docking engine and OpenBabel (http://openbabel.sourceforge.net) as the

molecular data model. This implementation has the following advantages: (1) a dynamic

scalable parallelization scheme for AutoDock integrated with queuing systems, such as

the Load Sharing Facilities (LSF) from Platform Computing Inc. and the Portable Batch

System (PBS) from Altair Grid Technologies; (2) a Web-page-based GUI for users to

specify docking parameters, submit docking jobs and query/visualize docked ligands; (3)

an industry standard input/output file interface, in particular the MDL sd format is used

for the output results; (4) a general interface to use third-party scoring functions and a

protocol to retain user specified top number of docked ligands based on their scores; and

(5) a collection of pre-processed compounds from the ZINC database (Irwin et al., 2005)

in sd format embedded with molecular properties and purchase information.

2 METHODOLOGY

2.1 Parallel Docking

Docking a large number of compounds in a database against a given protein target fits the

single program multiple data (SPMD) model, where each CPU works on a different part

of the database. There is neither overlap of data nor dependency among CPUs. However,

there are situations to be considered when running such processes on shared HPC

resources:

(1) To dock one-million compounds in a reasonable time (~1 week) requires 200+

CPUs. On a shared HPC platform, what’s the best way to request CPUs at this

scale?

(2) Compounds in a database are usually different and so is the time required to

dock each of them. Hence load balancing among CPUs is important.

(3) Usually, there is a runtime limit on shared resources. How does one efficiently

use the CPUs obtained within the allowed runtime and how to automatically

“restart” the process for unfinished jobs?

 Taking these situations into consideration, we designed a flexible parallelization

scheme to maximize the usage and efficiency of the system:

(1) The compounds in a database are grouped into tasks with N compounds in

each task. Every CPU works on one task at a time.

(2) A file-based inter-process communication (IPC) protocol is used to control the

distribution of tasks. This protocol ensures that only one CPU can access the

task file at any particular time.

(3) Job-array, a queuing method, is used to launch the parallel job.

(4) When a CPU is running, it uses the IPC protocol to check-out a task and to run

the required computations.

(5) Once a task is completed by a CPU, the CPU uses the IPC protocol to check-

in the task and upload the results to a central location. Then, the CPU checks

whether there is enough runtime left to do another task. If so, it goes back to

the previous step; otherwise it exits the process.

(6) After all CPUs exited, a separate process, which has a dependency on the job-

array processes, starts to match the check-out and check-in task lists and the

status of the original task list. If there are unfinished tasks remaining on the

list or there are tasks checked out but never checked in, it updates the original

task list and restarts the parallel job; otherwise the whole job is completed.

 This parallelization scheme has several advantages. First, the process is self

controlled without a dedicated control process. The IPC is only used to manage the task

list and update results. The data volume involved in IPC is very light. With a typical task

runtime of about 5 hours, the waiting time for the IPC protocol is minimal. In addition,

the number of CPUs managed by the scheme is dynamically changeable. Users can add

or remove a number of CPUs working on the job at runtime. Job-array is one convenient

way to launch parallel jobs, but other queue methods can also be used to launch jobs.

Finally, the scheme can automatically re-launch the parallel job depending on the status

of the overall tasks.

2.2 Graphic User Interface

In order to provide easy access to non-expert users to the DOVIS pipeline, we developed

a GUI using the User Interface Toolkit (UIT). A Web-server was setup at the BHSAI to

control DOVIS jobs on HPC resources through the UIT Web-services provided by the

Engineer Research and Development Center (ERDC) MSRC. In addition, we used

UIT to transfer results (docked molecules) back to the Web-server and visualize those

using JMol applets. Therefore, users can access the DOVIS pipeline, submit jobs to HPC

resources and visualize results on their Web-browser.

3 IMPLEMENTATION

3.1 Parallel Docking

In the DOVIS pipeline, we used OpenBabel Application Programming Interfaces (APIs)

for file import/export and format conversions. In addition, we parsed the AutoDock

results to create docked molecules in MDL sd format with embedded docking scores. We

used C++ and Perl scripts to drive all AutoDock executables.

 A task list is created right before the start of a parallel job. The input molecules

are assigned to tasks. Each task contains a user-specified number of molecules, usually

50 to 100 molecules. For the IPC protocol, we use the system command “lockfile” as a

NFS safe file locking mechanism to control access to task files. We implemented two file

locks: one for check-out task; the other for check-in task and update of the saved results.

Since a user may wish to save a limited number of top scored molecules, we set up a

central directory to hold the sorted results. Each CPU uses the check-in file lock to

upload results which are qualified for the final list.

 In order to improve the prediction accuracy, we developed a general interface to

run third-party scoring programs within the DOVIS pipeline. From the pipeline, we pass

the file names of the protein pdb file, the docked molecule file, the binding site file and

the scored molecule file to a Perl-wrapper script along with user-specified options for the

third-party scoring program. The Perl wrapper is a specific script to drive a particular

scoring executable. It also parses the results from the scoring program to embed the

scores into the output sd file. Using this approach, the interface parameters between the

pipeline and the Perl wrapper are fixed. For a new scoring program, only a new wrapper

script is needed to link it to the pipeline, no change is required in the pipeline.

 Another concern is that the AutoDock executable docks one molecule at a time,

employing file-based I/O data volume around 20 Mb. Most of these data consist of

energy grid files. When loading the data from a NFS location with a large number of

CPUs running concurrently, the data flow can degrade the performance of the entire

Linux cluster. We modified the source code of AutoDock so that after loading the energy

grids once, multiple molecules can be docked. This change reduced the I/O data volume

by more than 90% when 50 molecules were docked at a time. We tested the scenario with

256 CPUs running concurrently using a NFS, and did not observe any performance

degradation of the file system.

 Currently, we use the job-array function in LSF or PBS to launch parallel jobs.

We also programmed a Perl script, which has a dependency on the parallel job to check

the status of the task list. If there is any unfinished task, the script will automatically re-

launch the parallel job.

3.2 Graphic User Interface

 The DOVIS pipeline Web-server was implemented using Java Servlets/Java

Server Pages. It uses the Java version of APIs in UIT to provide Web-services. In

addition, it incorporates the usage of JMol applets in Web-pages to display the results.

This scheme enables molecular visualization at a user’s local machine, which

significantly enhances the visualization performance as compared to an X-window based

approach.

3.3 Pre-docking Steps

Before starting the parallel docking jobs, there are two pre-docking steps. One is to pre-

compute energy grids for all possible atom types around the binding site of a target

protein. A Perl script was used to drive the AutoGrid executable for the energy grid

calculations. The other pre-docking step is to divide the input set of small molecules into

partitions (e.g., 10,000 molecules/partition), and to embed a DOVIS ID and other

available information (e.g., molecular descriptors and purchase information from the

ZINC database) into the partitioned sd file. Using partitioned, smaller input files

improves the efficiency and reduces I/O overhead of the parallel docking job since each

CPU only needs to copy the partition with the molecules in the current task to its working

directory instead of the whole database. In addition, since the name of a molecule may

not be unique in a database, a serial DOVIS ID is created to uniquely label every entry in

a database.

4 RESULTS

In order to build a compound database for testing purposes and for scientific research, we

pre-processed the ZINC database (version 6, 2.3 million compounds) to partition and

embed information. Using the pre-processed ZINC database, we tested how many ligands

can be docked to a receptor per day with varying numbers of CPUs. We performed tests

with up to 128 CPUs on a Linux cluster and obtained a near-linear speedup as a function

of the number of CPUs, for the ZINC database. This indicates that our implementation

achieved near-optimal performance.

In addition, we used the thymidine kinase test case to validate the DOVIS

pipeline, where nine known inhibitors (positive controls) are mixed with random

compounds to form a database of 1,000 compounds. Using the DOVIS pipeline with the

best scoring function, we can find the nine know inhibitors in the top 20% of compounds

retrieved from the database as shown in Figure 1. Although it is difficult to predict which

scoring function performs best for a particular system, if positive controls are available,

users can run a small scale screening first to determine the best scoring function before

conducting screening of a large database.

0

1

2

3

4

5

6

7

8

9

0 100 200 300 400 500 600 700 800 900 1000

Rank of Molecules

N
u

m
b

e
r

o
f

K
n

o
w

n
 I
n

h
ib

it
o

rs

Random

LigScore2

AutoDock3

Figure 1. Recovery of know inhibitors of thymidine kinase from a virtual screening

exercise.

Furthermore, U.S. Army users at U.S. Army Medical Research Institute for

Infectious Diseases (USAMRIID) used the DOVIS pipeline to screen 2.3 million

compounds from the ZINC database against the ricin A chain protein – a toxin that could

be used in bioterrorism. The run was fully automated using 256 CPUs and consumed a

total of 77,000 CPU-hours.

5 SUMMARY

Using AutoDock as its docking engine, DOVIS enables DoD scientists to develop

therapeutics against biological threats for force protection. The DOVIS pipeline provides

an automated parallel docking package that is integrated with a queuing system. This

application is suitable for conducting large-scale high-throughput virtual screening on

Linux cluster platforms.

DISCLAIMER

The opinions or assertions contained herein are the private views of the authors and are

not to be construed as official or as reflecting the views of the US Army or the US

Department of Defense. This paper has been approved for public release; distribution is

unlimited.

ACKNOWLEDGEMENT

This work was sponsored by the US Department of Defense High Performance

Computing Modernization Program (HPCMP), under the High Performance Computing

Software Applications Institutes (HSAI) initiative.

REFERENCES

Friesner, R.A., Banks, J.L., Murphy, R.B., Halgren, T.A., Klicic, J.J., Mainz, D.T.,

Repasky, M.P., Knoll, E.H., Shelley, M., Perry, J.K., Shaw, D.E., Francis, P. and

Shenkin, P.S. (2004) Glide: a new approach for rapid, accurate docking and scoring. 1.

Method and assessment of docking accuracy. J. Med. Chem., 47, 1739-49.

Ghosh, S., Nie, A.H., An, J. and Huang, Z. (2006) Structure-based virtual screening for

drug discovery. Curr. Opin. Chem. Biol., 10, 194-202.

Irwin, J.J. and Shoichet, B.K. (2005) ZINC--a free database of commercially available

compounds for virtual screening. J. Chem. Inf. Model., 45, 177-182.

Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K. and

Olson, A.J. (1998) Automated docking using a Lamarckian genetic algorithm and an

empirical binding free energy function. J. Comput. Chem., 19, 1639-1662.

Rarey, M., Kramer, B., Lengauer, T. (1995) Time-efficient docking of flexible ligands

into active sites of proteins. Proc. Int. Conf. Intell. Syst. Mol. Biol., 3, 300-8.

Venkatachalam, C.M., Jiang, X., Oldfield, T. and Waldman, M. (2003) LigandFit: a

novel method for the shape-directed rapid docking of ligands to protein active sites. J.

Mol. Graph. Model., 21, 289-307.

Vaque, M., Arola, A., Aliagas, C. and Pujadas, G. (2006) BDT: an easy-to-use front-end

application for automation of massive docking tasks and complex docking strategies

with AutoDock. Bioinformatics, 22, 1803-1804.

